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Retrieval Results (Solar Village, Saudi Arabia)

We developed a multi-temporal algorithm to retrieve aerosol from the time series of retrieved surface reflectances. Our previously
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fine/coarse ratio vectors are spatially smoothed using a 7-by-7 filter window to generate the final optical depth product. 0.8 | (oSO e “-“””“5/ - { R g [/ EEE% below erorbounds
Some benefits of the algorithm are: | . o
« Large improvement over deserts, such as Solar Village, Saudi Arabia, compared to the MAIAC algorithm, which is the current |
state-of-the-art multitemporal aerosol algorithm oY
 Significant improvement over urban areas, such as CCNY, as compared to Dark Target (DT), current NASA operational algorithm 03]
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